'Surface' Element on the Light Cone

EGON MARX

Harry Diamond Laboratories, Electromagnetic Effects Laboratory, Adetphi, Maryland 20783

Received: 16 *September* 1974

Abstract

We find an explicit form for the vector 'surface' element on the light cone in Minkowski space by a limiting process from that of a space-like pseudosphere. We use it to discuss more precisely the confinement of the radiation emitted by a charged particle between two light cones.

t. Introduction

A three-dimensional 'surface' element in Minkowski space is a four-vector $d\sigma_{\mu}$, which usually can be written in the form

$$
d\sigma_{\mu} = n_{\mu} d\sigma \tag{1.1}
$$

where n_{μ} is the unit normal to the surface. However, on the light cone, or at points on other surfaces where the normal is a null vector, such a unit vector does not exist (the components tend to infinity) and $d\sigma$ vanishes (Synge, 1956; Rohrlich, 1965), but $d\sigma_{\mu}$ is finite.

In order to give a precise definition to the energy and momentum of the radiation emitted by an accelerated point charge for a segment of its world line (Schild, 1960), it has been found necessary to show that

$$
\lim_{\rho \to \infty} \int_{\sigma_L} \Theta_{\mu\nu} d\sigma_{\mu} = 0 \tag{1.2}
$$

where $\Theta_{\mu\nu}$ is the symmetrized stress-energy tensor for the electromagnetic field, σ_L is a band on a light cone, and the limit $\rho \rightarrow \infty$ indicates that the spatial dimensions tend to infinity. To discuss this integral in more detail, it is useful to have an explicit expression for $d\sigma_{\mu}$ that we derive in Section 2 by a limiting process from $d\sigma_\mu$ for a space-like pseudosphere. In Section 3 we show that the integral actually vanishes.

^{© 1975} Plenum Publishing Corporation. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher.

150 EGON MARX

We use the time-favoring metric *guy* whose non-zero components are

$$
g_{00} = -g_{11} = -g_{22} = -g_{33} = 1 \tag{1.3}
$$

the modified summation convention for repeated Greek sub-indices

$$
a \cdot b = a_{\mu}b_{\mu} = a_0b_0 - a \cdot b = a_0b_0 - a_1b_1 - a_2b_2 - a_3b_3 \tag{1.4}
$$

and we set the speed of light $c = 1$.

2. Surface Element on the Light Cone

We first determine the surface element on the space-like pseudosphere with origin at ξ and radius λ

$$
(x - \xi)^2 = \lambda^2 \tag{2.1}
$$

and then we let the (real) constant λ go to zero. The unit normal at a point x is given by

$$
n_{\mu} = (x_{\mu} - \xi_{\mu})/\lambda \tag{2.2}
$$

and the vector surface element is given by

$$
d\sigma_{\mu} = n_{\mu} d\sigma \tag{2.3}
$$

In order to determine *de,* we introduce curvilinear coordinates on the pseudosphere, and we are careful to choose them in such a way that they will still be useful when $\lambda \rightarrow 0$. We take

$$
x_0 = \xi_0 + \eta \tag{2.4}
$$

$$
x_1 = \xi_1 + (\eta^2 - \lambda^2)^{1/2} \sin \theta \cos \phi
$$
 (2.5)

$$
x_2 = \xi_2 + (\eta^2 - \lambda^2)^{1/2} \sin \theta \sin \phi
$$
 (2.6)

$$
x_3 = \xi_3 + (\eta^2 - \lambda^2)^{1/2} \cos \theta \tag{2.7}
$$

and, calculating the metric element induced in this space by the Minkowski metric, we find

$$
ds^{2} = dx_{\mu} dx_{\mu}
$$

= $\left[\lambda^{2}/(\eta^{2} - \lambda^{2})\right] d\eta^{2} - (\eta^{2} - \lambda^{2})(d\theta^{2} + \sin^{2}\theta d\phi^{2})$ (2.8)

hence the surface element is

$$
d\sigma = \lambda (\eta^2 - \lambda^2)^{1/2} \sin \theta \, d\mu \, d\theta \, d\phi \tag{2.9}
$$

When $\lambda \rightarrow 0$, the metric becomes singular, as expected, and $d\sigma \rightarrow 0$. Nevertheless, the vector surface element

$$
d\sigma_{\mu} = (x_{\mu} - \xi_{\mu})(\eta^2 - \lambda^2)^{1/2} \sin \theta \, d\eta \, d\theta \, d\phi \tag{2.10}
$$

remains finite in this limit, and can be used in the calculations of the next section. We can also compute the surface element directly from

$$
d\sigma_{\mu} = \epsilon_{\mu\nu\lambda\rho} \frac{\partial x^{\nu}}{\partial \eta} \frac{\partial x^{\lambda}}{\partial \theta} \frac{\partial x^{\rho}}{\partial \phi} d\eta d\theta d\phi
$$
 (2.11)

where $\epsilon_{\mu\nu\lambda\rho}$ is the completely antisymmetric numerical tensor (its components are $0, \pm 1$) and the x_v are given by equations (2.4) through (2.7) with λ set equal to zero. Both methods give the same result for the metric (1.3) , but they are not equivalent in a general case.

3. Integral Over the Light Cone

We consider the radiation emitted by a point source of prescribed trajectory in Minkowski space given by the parametric equations

$$
\xi_{\mu} = \xi_{\mu}(\tau) \tag{3.1}
$$

where we choose the parameter τ to be the proper time, so that the velocity $u_{\mu} = d\xi_{\mu}/d\tau$ satisfies $u^2 = 1$. The stress-energy tensor is (Schild, 1960)

$$
\Theta_{\mu\nu}(x) = -\frac{e^2}{16\pi^2 \epsilon_0} \left\{ \frac{\left[(1 - R \cdot w)^2 + w^2 (R \cdot u)^2 \right] R_{\mu} R_{\nu}}{(R \cdot u)^6} - \frac{(1 - R \cdot w) (u_{\mu} R_{\nu} + u_{\nu} R_{\mu})}{(R \cdot u)^5} - \frac{w_{\mu} R_{\nu} + w_{\nu} R_{\mu}}{(R \cdot u)^4} \right\} - \frac{e^2}{32\pi^2 \epsilon_0} \frac{g_{\mu\nu}}{(R \cdot u)^4} \tag{3.2}
$$

where w_{μ} is the acceleration $du_{\mu}/d\tau$

$$
R_{\mu} = x_{\mu} - \xi_{\mu} \tag{3.3}
$$

and τ is determined as a function of x by

$$
R^2 = 0, \qquad R_0 > 0 \tag{3.4}
$$

that is, x is on the forward light cone with vertex at $\xi(\tau)$. Equation (2.10) gives the surface element on the light cone

$$
d\sigma_{\mu} = R_{\mu}\eta \sin \theta \, d\eta \, d\theta \, d\phi \tag{3.5}
$$

Then, to show that the radiation remains confined between light cones, we have to prove the relation (1.2). We use the fact that R is a null vector to obtain

$$
\int_{\sigma_L} \Theta_{\rho\nu} \, d\sigma_\mu = \frac{e^2}{32\pi^2 \epsilon_0} \int_{\sigma_L} \frac{d\sigma_\nu}{(R_\cdot u)^4} \tag{3.6}
$$

we see that only terms of the order of ρ^{-4} survive in $\Theta_{\mu\nu}$, where $\rho = R$. *u*. If the width of the band σ_L , or the range of integration over η , remains finite as $\rho \rightarrow \infty$, the integral goes to zero as ρ^{-2} ; on the other hand, if this width increases as ρ does, the integral goes to zero as ρ^{-1} only, which is Schild's result.

152 EGON MARX

Acknowledgment

I would like to thank Dr. P. G. Bergmann for useful comments.

References

- Rohrlich, F. (1965). *Classical Charged Particles,* Appendix t, p. 282. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.
- Schild, A. (1960). *Journal of Mathematical Analysis and Applications*, 1, 127. See also Rohrlich (1965), Sec. 5-1, pp. 106 ff. A more detailed discussion and helpful figures are found in these references.

Synge, J. L. (1956). *Relativity: The Special Theory,* Appendix D. North-Holland Publishing Company, Amsterdam.