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A b s t r a c t  

We find an explicit  form for the  vector 'surface '  e lement  on the  light cone in Minkowski 
space by a limiting process f rom tha t  o f  a space-like pseudosphere.  We use it to discuss 
more  precisely the  conf inement  of  the  radiat ion emit ted by  a charged particle be tween 
two light cones. 

t .  I n t r o d u c t i o n  

A three-dimensional 'surface' element in Minkowski space is a four-vector 
deu, which usually can be written in the form 

d e  u = n u d e  (1.1) 

where n u is the unit normal to the surface. However, on the light cone, or at 
points on other surfaces where the normal is a null vector, such a unit vector 
does not exist (the components tend to infinity) and do vanishes (Synge, 
1956; Rohrlich, 1965), but de  u is finite. 

In order to give a precise definition to the energy and momentum of  the 
radiation emitted by  an accelerated point charge for a segment of  its world 
line (Schild, 1960), it has been found necessary to show that 

lim I ®uvd°u = 0 (1.2) 
P -~ ~ eL 

where (guu is the symmetrized stress-energy tensor for the electromagnetic 
field, e L is a band on a light cone, and the limit p -+ ~, indicates that the 
spatial dimensions tend to infinity. To discuss this integral in more detail, it 
is useful to have an explicit expression for d e  u that we derive in Section 2 by 
a limiting process from d e  u for a space-like pseudosphere. In Section 3 we 
show that the integral actually vanishes. 
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We use the time-favoring metric guy whose non-zero components are 

goo = - g l  1 = -g22  = -g33  = 1 

the modified summation convention for repeated Greek sub-indices 

a. b = aub u = aobo - a . b  = aob o - a l b  1 - a2b2 - aab3 

and we set the speed of  light c = 1. 

(1.3) 

(1.4) 

2. Surface E l e men t  on the L ight  Cone 

We first determine the surface element on the space-like pseudosphere with 
origin at ~ and radius X 

(x - ~)2 = X2 (2.1) 

and then we let the (real) constant X go to zero. The unit normal at a point x 
is given by 

nt* = (xt* - ~t*)/X (2.2) 

and the vector surface element is given by 

d a  u = nt* do (2.3) 

In order to determine de ,  we introduce curvilinear coordinates on the pseudo- 
sphere, and we are careful to choose them in such a way that they will still 
be useful when X -+ O. We take 

Xo = ~o + r/ (2.4) 

X l  = ~1 + ( n  2 - -  ~k2) 1/2 sin 0 cOS ~ (2.5) 

X2 = ~2 + ( 7  2 - -  X2) 1/2 sin 0 sin ~ (2.6) 

X3 = ~3 ÷ ( 7  2 - -  X2) 1/2 COS 0 (2.7) 

and, calculating the metric element induced in this space by  the Minkowski 
metric, we find 

ds 2 = dxt* dxt* 
= [~kZ/(~/2 - -  ~k2)] d n  2 - -  ( n  2 - -  ~kZ)(d0 2 + sin 2 0 d~b 2) (2.8) 

hence the surface element is 

da  = X(n 2 - ~k2) 1/2 sin 0 dl.tdO dq~ (2.9) 

When X -> 0, the metric becomes singular, as expected, and d e  ~ O. Never- 
theless, the vector surface element 

d(7~ = (Xt* - -  ~t*)(~2 __ ~2)1/2 sin 0 drl dO d~  (2.10) 

remains finite in this limht, and can be used in the calculations of  the next 
section. We can also compute the surface element directly from 

~x v 8x x ax ~ 
dot* = euvx° a n  30 Be) dndO de) (2.11) 
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where e~vko is the completely antisymmetric numerical tensor (its components  
are 0, + 1) and the xv are given by equations (2.4) through (2.7) with X set 
equal to zero. Both methods give the same result for the metric (1.3), but 
they are not equivalent in a general case. 

3. Integral Over the Light Cone 

We consider the radiation emitted by a point source of  prescribed trajectory 
in Minkowski space given by the parametric equations 

~u = ~ ( r )  (3.1) 

where we choose the parameter r to be the proper time, so that the velocity 
uu = d~u/dr satisfies u 2 = 1. The stress-energy tensor is (Schild, 1960) 

e 2 { [(1 - R. w) 2 + w2(R. u)2]RuRv 
Our(X) = - l&r2eo (R.  u) 6 

k 

(1 - R. w)(uvRv + uuR~) wuRv + wvRu I 
- (R.  u) s (R. u) 4 J 

e2 guy 

32zr2eo (R.  u) 4 (3.2) 

where wu is the acceleration duu/dr 

Ru = xu - ~u (3.3) 

and r is determined as a function o f x  by 

R 2 = 0 ,  Ro > 0 (3.4) 

that  is, x is on the forward light cone with vertex at ~(r). Equation (2.10) 
gives the surface element on the light cone 

dog = Rut7 sin 0 an dO de (3.5) 

Then, to show that the radiation remains confined between light cones, we 
have to prove the relation (1.2). We use the fact that R is a null vector to 
obtain 

e 2 

I ~)pvd°u 327r2eo f dtTu - (/~: u)  4 (3.6) 

aL OL 

we see that only terms of  the order of  p -4  survive in Our, where p = R .  u. I f  
the width of the band or,, or the range of  integration over r/, remains finite 
as p -+ ~ ,  the integral goes to zero as p-2;  on the other hand, if this width 
increases as p does, the integral goes to zero as p-1 only, which is Schild's 
result. 



152 EGON MARX 

Acknowledgment 

I would like to thank Dr. P. G. Bergmann for useful comments. 

References 

Rohrlich, F. (1965). Classical Charged Particles, Appendix t, p. 282. Addison-Wesley 
Publishing Company, Inc., Reading, Massachusetts. 

Schild, A. (1960). Journal of MathematicalAnalysis and Applications, l ,  127. See also 
Rohrlich (1965), Sec. 5-1, pp. 106 ff. A more detailed discussion and helpful figures 
are found in these references. 

Synge, J. L. (1956). Relativity: The Special Theory, Appendix D. North-Holland 
Publishing Company, Amsterdam. 


